Combined oxygen and glucose deprivation in cortical cell culture: calcium-dependent and calcium-independent mechanisms of neuronal injury.

نویسندگان

  • M P Goldberg
  • D W Choi
چکیده

Murine neocortical cell cultures were transiently deprived of both oxygen and glucose, producing widespread neuronal swelling in less than 60 min, followed by neuronal degeneration over the ensuing several hours, despite return to normal medium. Cultured glia (> 95% astrocytes) were irreversibly injured only by oxygen-glucose deprivation exposures exceeding 4-6 hr. Replacing either Na+ or Cl- with impermeant ions blocked acute neuronal swelling but did not prevent delayed neuronal degeneration. While neuronal swelling and death were increased by removing Ca2+ from the exposure medium, combined removal of extracellular Ca2+ together with Na+ or Cl- substitution blocked both acute and delayed injury. If acute swelling was limited by a hyperosmolar medium, then neuronal loss depended on extracellular [Ca2+]. Oxygen-glucose deprivation was associated with a large increase in extracellular glutamate concentration. Both early swelling and later neuronal degeneration were blocked by addition of NMDA receptor antagonists to the exposure medium but not by the AMPA/kainate receptor antagonist 6-cyano-7-dinitroquinoxaline-2,3-dione (CNQX), dihydropyridines nifedipine or nimodipine, or TTX. Oxygen-glucose deprivation induced substantial neuronal uptake of tracer 45Ca2+ from the exposure medium that was reduced by NMDA receptor antagonists and closely paralleled the degree of subsequent neuronal loss. These observations suggest the presence of two distinct components of hypoxic injury, each involving NMDA receptor activation and each capable of leading to neuronal death. Acute swelling is mediated by influx of Na+, Cl-, and water, and is enhanced by removal of extracellular Ca2+. Delayed neuronal degeneration depends on the presence of extracellular Ca2+ and correlates closely with cellular uptake of 45Ca2+.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition

AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...

متن کامل

The Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition

AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...

متن کامل

Nimodipine Protects PC12 Cells against Oxygen-Glucose Deprivation

The protective effect of a L-type calcium channel blocker, nimodipine, on cell injury induced by oxygen-glucose deprivation (OGD) in PC12 cells was investigated. PC12 cells were exposed to in-vitro oxygen-glucose deprivation (30 minutes and 60 minutes respectively) in the presence or absence of nimodipine (10mM/L) in three different time schedules (pre-24h, pre-3h and concurrently). Cellular vi...

متن کامل

Extracellular alkalinity exacerbates injury of cultured cortical neurons.

BACKGROUND AND PURPOSE We have previously shown that extracellular acidity protects cultured fetal murine neocortical neurons from glutamate toxicity and combined oxygen-glucose deprivation injury, an action at least in part mediated by reduction in N-methyl-D-aspartate receptor activation. We now investigate the effect of extracellular alkalinity on both glutamate neurotoxicity and injury due ...

متن کامل

Glutamate and non-glutamate receptor mediated toxicity caused by oxygen and glucose deprivation in organotypic hippocampal cultures.

In vitro ischemia models have utilized oxygen, or oxygen and glucose deprivation to simulate ischemic neuronal injury. Combined oxygen and glucose deprivation can induce neuronal damage which is in part mediated through NMDA receptors. Severe oxygen deprivation alone however can cause neuronal injury which is not NMDA mediated. We tested the hypothesis that NMDA, or non-NMDA receptor mediated m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 13 8  شماره 

صفحات  -

تاریخ انتشار 1993